

Cylinders - A **cylinder** is like the right prisms except that the bases of a cylinder are <u>circles</u>.

The formulas to calculate lateral area, total area, and volume will be nearly the same as prisms.

In a cylinder, the formula for Volume is exactly the same. (V=Bh)

Multiply the Area of the Base (B) by the height (h). In this case the base is a circle.

$$A = \pi r^2$$

The Lateral Area and Total Area are calculated in a similar manner. However we must replace "perimeter of base" with

 $C = 2\pi r$

circumference of base.

Formulas:

$LA = 2\pi rh$ TA = LA + 2B $V = \pi r^{2}h$

Example 1 - Find the Lateral Area, Total Area, and Volume of the Cylinder.

Example 2

Radius – 7m Area of Base =49πm² Height = 14m

Volume = $\pi(7^2)(14) = 686\pi m^3$ L.A. = $2\pi(7)(14) = 196\pi m^2$ T.A. = $196\pi + 2(49\pi) = 294\pi m^2$

Example 3

Radius – 50cm Area of Base =2500πcm² Height =75cm

Volume = $\pi(50^2)(75)$ =187500 π cm³ L.A. = $2\pi(50)(75) = 7500\pi$ cm² T.A. = $7500\pi + 2(2500\pi) = 12500\pi$ cm² A cone has one circular base.

Formula for Volume
Volume =
$$\frac{1}{3}$$
 Area of the Base x Height
 $V = \frac{1}{3} \pi r^2 h$

Formula for Lateral Area

L.A. = $\frac{1}{2}$ Circumference of Base x Slant Height L.A. = $\frac{1}{2}$ Cl $C = 2\pi r$ L.A. = $\pi r l$

Formula for Total Area

T.A. = L.A. + B

Total Area = Lateral Area + Area of Base

Therefore, to calculate Total Area and Volume of a Cone you must find three key pieces of information:

- 1. Area of the Base πr^2
- 2. Height of the object h
- 3. Slant Height I

Radius (r) - 6m Area of the Base (B) - 36πm² Height (h) - 8m Slant Height (l) - 10m

Example 2	Radius (r) - 9m
15m 12m	Area of the Base (B) - $81\pi m^2$
9m	
	Height (h) – 12m
	Slant Height (I) –15m
$ A - \pi n $	Lateral Area (L.A.) - π9(15)
	L.A. = $135\pi m^2$
T.A.=L.A.+B	Total Area (T.A) –
	135π+ 81π = <mark>216πm</mark> ²
$V = \frac{1}{3} \pi r^2 h$	Volume (V) - $\frac{1}{3}(81\pi)(12)$
	JLTIM

Example 3 -

- Lateral Area $260\pi cm^2$
- Total Area $360\pi cm^2$
- Volume $800\pi cm^3$